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Exercise 1: Memorylessness

= Demonstrate that the exponential distribution is memoryless.

aqualab | C. Bruschini, E. Charbon | 2025 Metrology: Elements of Statistics Slide 2 =PrL



Exercise 1: Memorylessness

Demonstrate that the exponential distribution is memoryless.

The definition of memorylessness is the following:

P{Y >s+t|Y >s}=P{Y >t}

For the exponential distribution Y ~Expo(A):

PlY<y}=F@)=1—eV

Follows by definition:

1—Fy(s+t) e AstD

— At _ —
= =e =1 F,(t) =P{Y >t

P{Y >s+t|Y >s}=
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Exercise 2: Stationary Processes

" Let a and w be two known constants and  a uniform RV with PDF:

,—M<PB<m

fU(,B) = %

0, otherwise
= Let X(t) be the RP:
X(t) = acos(wt + B)

= Demonstrate that the RP X(t) is Wide Sense stationary and, eventually, ergodic.
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Exercise 2: Stationary Processes
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The WS stationary condition requires the autocorrelation function to be function only
of the time variation t, — ty:

2 T
Kyx(ti,t;) = E{X(t1) - X(t,)} = ;—nj cos(wty + B) cos(wt, + B) df =

-7t

a? ("1 a?
=— | =[cos(wt; + wt, +2B) + cos(w(t1 — tz))] dfp = —cos(a)(t1 — tz))
2 )_ 2 2
To demonstrate that the RP X (t) is ergodic, we need to demonstrate that the
expected value coincides with the time-average mean value, and the autocorrelation
coincides with the time-average autocorrelation.
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Exercise 2: Stationary Processes

" First, let us look at the expected value and time-average mean value

E{X(0)} = % J " cos(wt + B) df = % [sin(wt + B)]%, = 0

1 (7 a
(X(t)) = lim —f a cos(wt + ) dt = lim —— [sin(wt + £)]L; =

T—-o0 2T J_; T—-o 2T w

= Th_r)rolo% |sin(wT + B) — sin(—wT + )] =0

= Hence, we demonstrated that (X (t)) = E{X(t)}
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Exercise 2: Stationary Processes

= Then let us look at the time-average autocorrelation.
1 T/2
Kyxx(t) = lim —j acos(wt + f) - acos(w(t — 1)+ B)dt =
T T J_ 1/,

a? (T/2 cos(wt) + cos(Qwt — wt + 28) a0

lim — =
T T ~T/2 2
© cos(w) + lim ot (sin(wT = wr + 26) — sin(—aT — @t + 28)) =
5~ cos(wt Tl—r>¥>10T22w sin(w wT + 2f) — sin(—w wtT + 20)) =
a’ a’

7COS(CUT) = 7cos(a)(t1 —t3)) = Kxx(t1,t2)

= Hence, we demonstrated that Ky (t;,ty) = Kxx (1), thus X(t) is ergodic.
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Exercise 3: Estimation using MLE

= MLE: Given a sample of n independent experiments x4, X5, ..., X,;, and
defined @ the parameters of the RV, we define the likelihood as:

n
L(xl'x2' ey X 8) — HfX(xi' 8)
i=1

» The MLE estimator is a value 8 such that L is maximized.

= A perfect single-photon detector (efficiency of 100%, no jitter, no DCR, etc..)
is working in ultra-low photon rate regime (e.g. as a exoplanet space
telescope) connected with a TDC (time-to-digital converter). The detector

collects, in 50 ms, 4 photons (tgrripa; = 1, 20, 35, 38 ms). Estimate .
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Exercise 3: Estimation using MLE

= MLE: Given a sample of n independent experiments x4, X5, ..., X,;, and
defined @ the parameters of the RV, we define the likelihood as:

n
L(xpxz» ey X 8) — an(xi' 8)
i=1

» The MLE estimator is a value 8 such that L is maximized.

= A perfect single-photon detector (efficiency of 100%, no jitter, no DCR, etc..)
is working in ultra-low photon rate regime (e.g. as a exoplanet space
telescope) connected with a TDC (time-to-digital converter). The detector
collects, in 50 ms, 4 photons (tgrripa; = 1, 20, 35, 38 ms). Estimate .

= The likelihood is, in this case:

4
L(ty,tp,t3,t4; 1) = 1_[ fx (s A)
=1
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Exercise 3: Estimation using MLE

= Qurt; is the difference between the time of arrivals:
t; =1,19,15,3 ms
= Hence, given that

fx() = e~

follows:

L(ty, ty, tg, ty; ) = Ate A2t

=  Applying the definition of MLE:
In(L) = 41n(A) — 12 t,

0, 0 4 , 4
- = — — . -
oL 2 l

N
Il

g
g
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Homework 1: Estimation using MLE

The measured fluorescence lifetime curve is modeled as the

convolution between the exponential function and the instrument
response function (IRF). Considering that we measure fluorescence
lifetime with an ideal setup (IRF is the Dirac function), calculate the

maximum likelihood estimator of fluorescence lifetime given the arrival
time of N photons.
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Homework 2: Random Walk

"= The random walk is a random process which can be used to model the
path resulting from random steps to the left (X; = 1) or to the right

(X; = —1) starting from the position O.
= Show that the variance of the random walk is maximum for

P{X;=1}=p=05

HINT: the final position of N-step random walk is the sum of X; .

N

J=1
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