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Exercise 1: Memorylessness

▪ Demonstrate that the exponential distribution is memoryless.
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Exercise 1: Memorylessness

▪ Demonstrate that the exponential distribution is memoryless.

▪ The definition of memorylessness is the following:

𝑃 𝑌 > 𝑠 + 𝑡|𝑌 > 𝑠 = 𝑃 𝑌 > 𝑡

▪ For the exponential distribution 𝑌~Expo(𝜆):

𝑃 𝑌 ≤ 𝑦 = 𝐹𝑌 𝑦 = 1 − 𝑒−𝜆𝑦

▪ Follows by definition:

𝑃 𝑌 > 𝑠 + 𝑡|𝑌 > 𝑠 =
1 − 𝐹𝑌 𝑠 + 𝑡

1 − 𝐹𝑌(𝑠)
=
𝑒−𝜆 𝑠+𝑡

𝑒−𝜆𝑠
= 𝑒−𝜆𝑡 = 1 − 𝐹𝑌 𝑡 = 𝑃{𝑌 > 𝑡}



Slideaqualab | C. Bruschini, E. Charbon | 2025 4Metrology: Elements of Statistics

Exercise 2: Stationary Processes

▪ Let 𝛼 and 𝜔 be two known constants and 𝛽 a uniform RV with PDF:

𝑓𝑈 𝛽 = ቐ
1

2𝜋
,−π ≤ 𝛽 ≤ 𝜋

0, otherwise

▪ Let 𝑋 𝑡 be the RP:

𝑋 𝑡 = 𝛼 cos 𝜔𝑡 + 𝛽

▪ Demonstrate that the RP 𝑋 𝑡 is Wide Sense stationary and, eventually, ergodic.
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Exercise 2: Stationary Processes

▪ The WS stationary condition requires the autocorrelation function to be function only 
of the time variation 𝑡2 − 𝑡1:

𝐾𝑋𝑋 𝑡1, 𝑡2 = 𝐸 𝑋 𝑡1 ∙ 𝑋 𝑡2 =
𝛼2

2𝜋
න
−𝜋

𝜋

cos 𝜔𝑡1 + 𝛽 cos 𝜔𝑡2 + 𝛽 𝑑𝛽 =

=
𝛼2

2𝜋
න
−𝜋

𝜋 1

2
[cos 𝜔𝑡1 + 𝜔𝑡2 + 2𝛽 + cos 𝜔 𝑡1 − 𝑡2 ] 𝑑𝛽 =

𝛼2

2
cos 𝜔 𝑡1 − 𝑡2

▪ To demonstrate that the RP 𝑋 𝑡 is ergodic, we need to demonstrate that the 
expected value coincides with the time-average mean value, and the autocorrelation 
coincides with the time-average autocorrelation. 
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Exercise 2: Stationary Processes

▪ First, let us look at the expected value and time-average mean value

𝐸 𝑋 𝑡 =
𝛼

2𝜋
න
−𝜋

𝜋

cos 𝜔𝑡 + 𝛽 𝑑𝛽 =
𝛼

2𝜋
sin 𝜔𝑡 + 𝛽 −𝜋

𝜋 = 0

𝑋(𝑡) = lim
𝑇→∞

1

2𝑇
න
−𝑇

𝑇

α cos 𝜔𝑡 + 𝛽 𝑑𝑡 = lim
𝑇→∞

𝛼

2𝑇𝜔
[sin 𝜔𝑡 + 𝛽 ]−𝑇

𝑇 =

= lim
𝑇→∞

𝛼

2𝑇𝜔
sin 𝜔𝑇 + 𝛽 − sin −𝜔𝑇 + 𝛽 = 0

▪ Hence, we demonstrated that 𝑋(𝑡) = 𝐸 𝑋 𝑡
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Exercise 2: Stationary Processes

▪ Then let us look at the time-average autocorrelation. 

𝒦𝑋𝑋 𝜏 = lim
𝑇→∞

1

𝑇
න
−𝑇/2

𝑇/2

𝛼 cos(𝜔𝑡 + 𝛽) ∙ 𝛼 cos(𝜔 𝑡 − 𝜏 + 𝛽) 𝑑𝑡 =

lim
𝑇→∞

𝛼2

𝑇
න
−𝑇/2

𝑇/2 cos 𝜔𝜏 + cos(2𝜔𝑡 − 𝜔𝜏 + 2𝛽)

2
𝑑𝑡 =

𝛼2

2
cos 𝜔𝜏 + lim

𝑇→∞

𝛼2

𝑇

1

2

1

2𝜔
sin 𝜔𝑇 − 𝜔𝜏 + 2𝛽 − sin −𝜔𝑇 − 𝜔𝜏 + 2𝛽 =

𝛼2

2
cos 𝜔𝜏 =

𝛼2

2
cos(𝜔(𝑡1 − 𝑡2)) = 𝐾𝑋𝑋 𝑡1, 𝑡2

▪ Hence, we demonstrated that 𝐾𝑋𝑋 𝑡1, 𝑡2 = 𝒦𝑋𝑋 𝜏 , thus 𝑋 𝑡 is ergodic.
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Exercise 3: Estimation using MLE

▪ MLE: Given a sample of 𝑛 independent experiments 𝑥1, 𝑥2, … , 𝑥𝑛, and 
defined 𝜃 the parameters of the RV, we define the likelihood as:

𝐿 𝑥1, 𝑥2, … , 𝑥𝑛; 𝜃 =ෑ

𝑖=1

𝑛

𝑓𝑋(𝑥𝑖 , 𝜃)

▪ The MLE estimator is a value መ𝜃 such that 𝐿 is maximized.

▪ A perfect single-photon detector (efficiency of 100%, no jitter, no DCR, etc..) 
is working in ultra-low photon rate regime (e.g. as a exoplanet space 
telescope) connected with a TDC (time-to-digital converter). The detector 

collects, in 50 ms, 4 photons (𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙 = 1, 20, 35, 38 ms). Estimate መ𝜆.



Slideaqualab | C. Bruschini, E. Charbon | 2025 9Metrology: Elements of Statistics

Exercise 3: Estimation using MLE

▪ MLE: Given a sample of 𝑛 independent experiments 𝑥1, 𝑥2, … , 𝑥𝑛, and 
defined 𝜃 the parameters of the RV, we define the likelihood as:

𝐿 𝑥1, 𝑥2, … , 𝑥𝑛; 𝜃 =ෑ

𝑖=1

𝑛

𝑓𝑋(𝑥𝑖 , 𝜃)

▪ The MLE estimator is a value መ𝜃 such that 𝐿 is maximized.

▪ A perfect single-photon detector (efficiency of 100%, no jitter, no DCR, etc..) 
is working in ultra-low photon rate regime (e.g. as a exoplanet space 
telescope) connected with a TDC (time-to-digital converter). The detector 

collects, in 50 ms, 4 photons (𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙 = 1, 20, 35, 38 ms). Estimate መ𝜆.

▪ The likelihood is, in this case:

𝐿 𝑡1, 𝑡2, 𝑡3, 𝑡4; 𝜆 =ෑ

𝑖=1

4

𝑓𝑋(𝑡𝑖; 𝜆)
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Exercise 3: Estimation using MLE

▪ Our 𝑡𝑖 is the difference between the time of arrivals:

𝑡𝑖 = 1, 19, 15, 3 ms

▪ Hence, given that

𝑓𝑋 𝑡 = 𝜆𝑒−𝜆𝑡

follows:

𝐿 𝑡1, 𝑡2, 𝑡3, 𝑡4; 𝜆 = 𝜆4𝑒−𝜆 σ 𝑡𝑖

▪ Applying the definition of MLE:

ln 𝐿 = 4 ln 𝜆 − 𝜆෍𝑡𝑖

𝜕

𝜕𝜆
ln 𝐿 =

4

𝜆
−෍𝑡𝑖 → መ𝜆 =

4

σ 𝑡𝑖
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Homework 1: Estimation using MLE 

▪ The measured fluorescence lifetime curve is modeled as the 
convolution between the exponential function and the instrument 
response function (IRF). Considering that we measure fluorescence 
lifetime with an ideal setup (IRF is the Dirac function), calculate the 
maximum likelihood estimator of fluorescence lifetime given the arrival 
time of 𝑁 photons.
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Homework 2: Random Walk

▪ The random walk is a random process which can be used to model the 
path resulting from random steps to the left (𝑋𝑗 = 1) or to the right 

(𝑋𝑗 = −1) starting from the position 0.

▪ Show that the variance of the random walk is maximum for 

𝑃 𝑋𝑗 = 1 = 𝑝 = 0.5

HINT: the final position of 𝑁-step random walk is the sum of 𝑋𝑗 :

𝑌 =෍

𝑗=1

𝑁

𝑋𝑗
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